$$
\begin{aligned}
& \text { UNITED BY } \\
& \text { ghavitational } \\
& \text { eountity } \\
& \text { (3) } \\
& \text { eTwinning }
\end{aligned}
$$

Project description

Aims

	- Promote physics competences: - Observe e identify phenomena - Formulate hypothesis explanatory statements using models, analogies and laws - Formalize a issue of physics and apply the instruments mathematics e disciplinary relevant to the his resolution - Get experience and make it right of the meaning of the various aspects of the method experimental - Improve language and communicative skills - Develop collaborative writing and consolidate the technical-scientific language - Develop ICT competencies also using collaborative web tools - Foster creativity and critical thinking - Encourage initiative and self-expression - Become more responsible and curious - Develop social and civic competences - Develop international collaboration and learning skills
Expected results	We expect: to make students aware of the profound unity of the nature and universal value of science to have them produce videos, slogans, leaflets by working together with their international peers to develop European friendships and the feelings of belonging to the same planet to improve digital, linguistic and math/scientific competences to apply mathematical tools in a real life situation and so to increase the scientific citizenship to help our school to experience a more international dimension and to encourage teachers to experiment with new forms of collaboration through networks of European teachers

Effects of Gravity:

Gravity affects the motion of planets, stars, galaxies in the universe. Additionally, many natural phenomena such as falling motions, ocean tides are fundamentally based on gravity.

Interaction

Gravity interacts only between massive objects. Every object has the capacity to attract other massive objects, but the degree of this attraction depends on the masses of the objects and the distance between them.

Zero Gravity:

In space stations beyond Earth or during flights, the gravitational effect can be nearly zero. This situation allows astronauts to move freely and experience a sensation of weightlessness.

Orbital Decay:
Over time, satellites may experience orbital decay due to various factors such as atmospheric drag, solar wind, or gravitational perturbations from other celestial bodies. If a satellite loses its orbital velocity or encounters increased atmospheric resistance, it may gradually spiral towards Earth.

Station-Keeping

Maneuvers:
To maintain their orbits, satellites often require occasional adjustments known as station-keeping maneuvers. These maneuvers involve using onboard thrusters or propulsion systems to counteract orbital decay and maintain the desired orbit by adjusting speed and trajectory.

